Wheat Traits Variations, Associations, and Potential Improvement from Crosses of Elite X Non-Adapted Germplasm
Abstract
Wheat improvement most often has been accompanied by a narrowing germplasm base, as newer cultivars have been derived from intercrosses between elite germplasm. However, there is a concern that narrow germplasm may restrict breeding improvement for important traits such as resistances to new biotic and abiotic stresses. In addition to germplasm base, the wheat kernel is a major component of wheat grain yield and an important factor for milling characteristics. Focusing on wheat kernel characteristics might be a key element to improve wheat genotypes for agronomic and quality traits. With the intention to broaden the wheat germplasm, and to explore the associations between kernel traits and agronomic as well as quality traits, a two-year study was initiated in 2009 to examine the influence of the kernel traits on the agronomic and quality attributes of a 160 Recombinant Inbred Lines (RIL) population developed from an adapted (ND 705) and a non-adapted genotype (PI 414566). The experiment was conducted at Prosper and Carrington, North Dakota, during 2009 and 2010. The RIL population had a better performance at Carrington than Prosper due to favorable climatic conditions at this location, in 2009 and 2010. The results in this study showed that kernel traits had a high correlation among them and they exhibited continuous variations suggesting a polygenic inheritance. Grain yield, kernel volume weight (KVW), and flour extraction were highly correlated with kernel width, length/width ratio, weight, and area. Eight RIL yielded better than the adapted parent ND 705 and two of the RIL along with three checks were significantly superior for gram yield compared with the other genotypes across all environments. Although the non-adapted parent has a facultative grown habit, several RIL required fewer days to flower compared to the adapted parent. Two RIL had better flour extraction compared to the other genotypes included in this study. These results indicated that kernel traits can play a significant role in improving agronomic and quality traits. Higher values for grain yield, KVW, and flour extraction were significantly associated with
spheroid or round shape (short and plump), large, and heavy kernels. The high agronomic and quality attributes showed by some RIL demonstrated that the use of a non-adapted parent can broaden the genetic variability while increasing the genetic gain for certain traits. Also, breeders should pay attention to kernel size and shape during the parental selection for the development of populations with improved agronomic and quality traits.